
1 	

GIS F2E Python – Features to Edge List in Python –
Installation and Tutorial

Authors: Rodrigo Marinho Moreira1 (rodrigommoreira13@gmail.com), Felipe Macena Alves1
(felipe.amacena@gmail.com), Sybil Derrible1 (derrible@uic.edu).

Table of Content Page
1. Main Function and Features 1

2. Pre-Requirements 2
3. Required Files 3
4. Running the code for OSM maps 3
5. Running the code for non-OSM maps 5
6. Limitations 5

1. Main Function and Features

The main function of this python code is to convert any Geographic Information Systems (GIS)
polyline feature (i.e., lines in a shapefile) into a network. The code outputs three files: nodes GIS
layer; links GIS layer; and list of links/edges in .csv format with start node and end node
coordinates, edge ID and link length. The code essentially cleans raw shapefiles that may have
overlapping or split lines to render a clean network, for which line intersections become nodes,
and lines connecting nodes become links. Please contact any of the three authors above to report
any bugs.

A specific version of the code was produced to process Open Street Map (OSM) road data that
possess some elevation information in the form of bridges and tunnels, where lines may be
intersecting but no nodes should be created.

This code is an adaptation of the ArcGIS GISF2E developed by A. Karduni, A. Kermanshah, and
S. Derrible. Although the process followed in the code is not the same as the process followed in
the ArcGIS toolbox, the end result should be identical.

The code reads any shapefile. OSM shapefiles can be downloaded from various sources,
including the website GEOFABRIK: https://www.geofabrik.de/data/download.html. The OSM
raw data contain a shapefile of links for the selected region, with information about the presence
of tunnels or bridges (1 if it applies, 0 otherwise) as well as link names and their osm_id. The
links, however, are not correctly split and there is no information about their start/end nodes
(Figure 1). The code first finds all intersections whenever two links intersect and cut overlapping
links if needed (if the link is not a tunnel or a bridge). From that, the two GIS layers are created
in addition to .csv file. Before running the code, you have to determine where these files will be

																																																													
1	Complex and Sustainable Urban Networks (CSUN) Laboratory, University of Illinois at Chicago, Chicago, IL	

2 	

saved in your computer.

Figure 1 – Link in red selected and its attributes table generated using QGIS. We can see that the

link is not correctly cut where it should be.

2. Pre-Requirements

1. The code is written in python. Thus, you will first need to install python 2.7.x
(other version will not work), which can be downloaded freely at https://www.python.org.
Several different software packages exist that install python along with all of the necessary
libraries needed to run the tool, such as Anaconda: https://store.continuum.io/cshop/anaconda/.

2. Six standard python libraries need to be installed to be able to run the code. These
libraries may already be installed with your version of python; type “import library_name” in
your python shell and see whether you receive an error. Moreover, you are recommended to
check the version for each library, which can be done typically by first importing the library
and then typing “library_name.__version__” (note the double underscore) in your python shell
(e.g., for pandas, type “import pandas”, and then “pandas._version_”). The libraries are:

a. csv (version 1.0 or later, typically already installed by default with python, if
“import csv” returns an error, see: https://pypi.python.org/pypi/csv/1.0)

b. os (should already be installed)
c. pyshp (version 1.2.3 or later, https://pypi.python.org/pypi/pyshp)
d. pyproj (version 1.9.5 or later, https://pypi.python.org/pypi/pyproj)
e. GDAL (version 2.0.2 or later https://pypi.python.org/pypi/GDAL)
f. pandas (version 0.14.1 or later, https://pypi.python.org/pypi/pandas/0.14.1)

These libraries themselves may require additional libraries. Follow the correct installation
procedure for all of them. Mac users are recommended to use pip or homebrew, which can
be installed from the command prompt. Windows users may find their required libraries at:
http://www.lfd.uci.edu/~gohlke/pythonlibs/.

3 	

3. Required Files

The dataset to analyze will need to be in .shp format (shapefile), which can be downloaded from
the website given in section 1 for OSM. Besides that, you may need to have either ArcGIS or
QGIS to view the results outside of python. Note that ArcGIS requires a license. QGIS is open
source. Both packages are available at:

- ArcGIS: http://www.esri.com/software/arcgis/arcgis-for-desktop
- QGIS: https://www.qgis.org/en/site/forusers/download.html

4. Running the code for OSM maps

In this section, we run the files provided with the tutorial:
- Chicago_cut for OSM data that was downloaded and cut a smaller shapefile from:

http://download.geofabrik.de/north-america/us/illinois.html
- Shape3 for non-OSM data that was downloaded and cut a smaller shapefile from:

http://www.mapcruzin.com/download-shapefile/us/connecticut_highway.zip	

Step 1: Before running the code, make sure the shapefile that you want to work with is in the
GISF2E folder named as input (Figure 2). Make sure that there is just one shapefile in this folder.

Figure 2 – Correct folder where the shapefile must be located.

Step 2: After you run the code, the first question will be related whether you want to use the
shapefile from the folder above or type its location in your computer (Figure 3).

Figure 3 – If you followed step 1, just type 1 in this question.

Step 3: For the next question, as in this case the shapefile is from OSM, just type y or yes or Y
(Figure 4).

Figure 4 – Second question made after the code runs.

4 	

Step 4: Once you have followed step 3, the code will give you updated information as soon as it
completes each line below as well as the cumulative time. At the end, you will have the message
shown in Figure 5 and you will be able to open the outputs generated.

Figure 5 – Message shown after the code finishes running.

Step 5: You can look for the shapefiles generated as well as the edgelist csv. file located in the
GISF2E folder named as output (Figure 6).

Figure 6 – Correct location of the outputs from the code.

Step 6: To open the shapefiles, you will need to have either QGIS or ArcGIS. Figure 7 shows
how the two shapefiles are presented using QGIS.

5. Running the code for non-OSM maps

Step 1: The only difference between running the code for OSM and non-OSM data is that in the
step 3 of running the code for OSM maps, you have to change the answer to n, no or N.

5 	

Figure 7 – Edges and Nodes shapefiles as outputs from the raw OSM data.

6. Limitations

For OSM maps, this code uses the English language, so the tests are made based on the words
“bridge” and “tunnel”. As a variation for other languages that can be used, you just have to
change these words with the ones that appear as a field name on the shapefile. For example, in a
Portuguese shapefile, the changes should be: bridge → ponte and tunnel → túnel. Also, these
adjustments should be made only in the follow lines directly in the code: 260, 289 and 291.

